United States District Court,
W.D. Texas, Austin Division.

VIA TECHNOLOGIES, INC. and,
V.
INTEL CORPORATION.

No. A-01-CA-602-SS

March 6, 2003.

Joy A. Arnold, Birch M. Harms, Bryan J. Vogel, David G. Lindenbaum, Derek M. Kato, Franciscus A.
Ladejola-Diaba, Gene W. Lee, Jeffrey D. Blake, John M. Hintz, Khue V. Hoang, Laurence S. Rogers,
Robert C. Morgan, Sasha G. Rao, Theresa A. Moehlman, Edward W. Bailey, Fish & Neave, New York,
NY, Christa P. Worley, Norman H. Beamer, Fish & Neave, Jennifer A. Ochs, Robert P. Feldman, Rodney
G. Strickland, Jr., Wilson, Sonsini, Goodrich & Rosati, Palo Alto, CA, Lin Hughes, Patton G. Lochridge,
McGinnis, Lochridge & Kilgore LLP, Austin, TX, Richard L. Rainey, Roderick R. Mckelvie, Fish & Neave,
Washington, DC, for Via Technologies, Inc. and Centaur Technology, Inc.

Anthony W. Shaw, Cecil E. Key, Cono A. Carrano, Robert A. King, Dewey Ballantine, LLP, Washington,
DC, James J. Elacqua, Andrew N. Thomases, Jeannine Y. Sano, Saxon S. Noh, Dewey Ballantine, LLP,
Palo Alto, CA, Kevin S. Kudlac, Weil, Gotshal & Manges LLP, Darryl Adams, Stephen J. Rosenman,
Dewey Ballantine, LLP, Steven J. Wingard, Scott, Douglass & McConnico, L.L.P., Austin, TX, for Intel
Corporation.

ORDER
SAM SPARKS, District Judge.

BE IT REMEMBERED on the 6th day of March 2003 the Court reviewed the file in the above-styled
cause, specifically the Report and Recommendations of the Special Master regarding the patents-in-suit [#
272-29] and the parties' objections thereto [# 288, 291]. Having considered the Report and
Recommendations, the parties' objections, the testimony and evidence from the Markman hearing, the case
file as a whole and the applicable law, the Court enters the following opinion and orders.

Analysis of the Parties' Objections
I. '188 Patent
Intel Corporation ("Intel") did not file any objections to the Special Master's construction of the claims in

the '188 patent. The plaintiffs, Via Technologies, Inc. and Centaur Technology, Inc. ("Via") did file
objections, which the Court discusses below.

A. buffer/control logic

Via objects to the Special Master's construction of "buffer/control logic" on the grounds that the
construction limits the inputs and outputs to the buffer/control logic to those in the preferred embodiment in
Figure 4. The Court agrees the Special Master's construction of this term describes what the buffer/control
logic does, rather than what it is. This description is redundant because the claim language following the
term describes what the buffer/control logic is configured to do. The Court finds the plain language of the
term, combined with the description of the term's function in the claim language, is a sufficiently clear
explanation of the term for the jury and the Court need not construe the term. Accordingly, the Court
sustains in part the objection and removes the Special Master's construction of buffer/control logic.

B. selective clock multiplier

Via objects to the Special Master's recommended construction of "selective clock multiplier," arguing the
construction requires the selective clock multiplier to receive inputs from the buffer/control logic and the
bus clock signal and clock ratio signals. Via contends these requirements only occur in the preferred
embodiment in Figure 4 of the patent. The Court finds the Special Master's construction is consistent with
the claim language, which states "a selective clock multiplier, couple to said buffer/control logic, configured
to receive the bus clock signal and to generate the core clock signal ..." and "a selective clock multiplier, for
receiving a system bus clock signal, and for generating the core clock signal from said system bus clock
signal...." '188 Patent, Claims 12; 19.

Additionally, the construction is consistent with Via's counsel's explanation at the hearing that "all of [the
claims] that recite a selective clock multiplier indicate that it-as input to it, it will have the output of the
buffer/control logic and the bus clock." Markman Transcript, Vol. 1, at 45. As for the clock ratio signals,
Via's counsel explained the selective clock multiplier "would still have the input to the processor of these
ratio signals, but it just may not necessarily be to that specific piece of circuitry; it may be coming through
another route." Id. at 46. When the Special Master asked, "So the information is somehow getting to the
selective clock multiplier but not directly to it?," Via's counsel answered, "Right." Id. In other words, Via
conceded the selective clock multiplier does receive the clock ratio signals as input, but argued the signals
do not have to come through the circuitry depicted in Figure 4. The Special Master's construction, however,
does not require the circuitry shown in Figure 4, but merely requires the clock ratio signals to be inputs into
the selective clock multiplier. Accordingly, Via's objection is overruled.

C. test control logic

Via objects to the Special Master's construction of "test control logic" on the grounds that it requires the test
signal to come from test equipment (thereby limiting the invention to the preferred embodiment in Figure 4)
and requires the test control logic to "re-enable" control of the clock ratio via the control signals. In the
Special Master's construction, the test control logic responds to "a signal from test equipment." The claim
language limits the test control logic to use "during test of the microprocessor." '188 Patent, Claim 21. To be
tested, the microprocessor must receive a signal from some sort of test equipment. Therefore, the Court
finds the Special Master's construction does not improperly limit the invention to the preferred embodiment.

Via also contends the "re-enable" language limits the test control logic to situations where the fuse is blown,
even though the claim language states "regardless of whether said fuse is blown." '188 Patent, claim 21. The
Special Master's construction does not require the fuse to be blown. The word "re-enable" merely
emphasizes that the selective clock multiplier ignores any fixed ratio during testing so the clock ratio signals
can prescribe the multiple for the clock ratio. The claim language clarifies that the fuse need not be blown.

Via's objection is overruled.

D. fuse

Via objects to the Special Master's construction of the term "fuse" when it appears in the '188,'679 and '735
patents. Via contends the Special Master's construction improperly limits the term to a particular type of
fuse. The Special Master's construction of fuse requires an "electrical connection between two points;" in
the '188 patent, the claim language states the fuse provides "an electrical signal path." '188 Patent, claim 16.
Via points to language in the '735 specification stating "[o]ther fuse structures can be used" (other than
those depicted in Figures 3A and 3B) and "other materials (other than polysilicon) can be used to construct
the fuses." '735 Patent, 5:65-67. Although the patents allow for varied fuse structures and materials, they
require the fuses to provide an electrical connection between two points. Therefore, Via's objection is
overruled.

I1. '311 Patent
A. floating point register file

Intel objects to the Special Master's construction of "floating point register file" on the grounds that it does
not specify the floating point register file must be physically separate from the integer register file. While
Intel pressed this argument fervently in its Markman briefs and at the hearing, the claim term itself does not
require physical separation. The separation between the floating point register file and the integer register
file is revealed elsewhere in the claim language, in the requirement that the floating point register file be
"coupled to" the integer register file. '311 Patent, claim 1. Because inserting that requirement into the
construction of floating point register file would be redundant and simply incorrect, Intel's objection is
overruled.

B. translator

Via objects to the proposed construction of "translator" because it states the translator outputs "operations"
instead of micro-operations. Via contends the patent specification includes a definition of translator in
column 4, lines 37 through 45. The Court holds that passage is not an express definition of a translator but a
description of what the translator depicted in Figure 2 does. Additionally, Figure 5 does not require the
translator to output a particular type of instruction (i.e.micro-operations). Therefore, "operations" is more
appropriate in the construction of translator than "micro-operations," and Via's objection is overruled.

C. instruction, conversion instruction, move instruction

nn

Via objects to the Special Master's construction of "instruction,” "move instruction" and "conversion
instruction" as not specifying the instructions are translated instructions, or micro-operations. However, the
Court finds the claim language clearly indicates the instructions are "provided by a translator" and the
definition of instruction need not repeat that requirement. '311 Patent, claims 1, 14. Via's objection is
therefore overruled.

III1. 'S08 and '748 Patents
A. single logical register file

Intel objects to the Special Master's decision not to construe the term "single logical register file" in the '508

nn nn

and '748 claim constructions. The Special Master did define the terms "register," "register file," "physical
register file" and "logical register file." Given those constructions, the Court finds further construction of
"single logical register file" unnecessary and overrules Intel's objection.

B. transition unit

Via objects to the construction of "transition unit," arguing the construction should clarify the transition unit
causes transitions from floating point mode to packed data mode and vice versa. The construction states the
transition unit "causes the transition between floating point mode and packed data mode," which leaves
open the possibility that the transitions could be back and forth.

Via also contends transition unit should be construed as a means-plus-function term under 35 U.S.C. s. 112,
para. 6 because, even though the term does not contain the "means for" language, the term "relies on
functional terms other than structure or material to describe performance of the claimed function." Micro
Chem. Inc. v. Great Plains Chem. Co., 194 F.3d 1250, 1257 (Fed.Cir.1999). Section 112, paragraph 6 of the
patent statute provides: "An element in a claim for a combination may be expressed as a means or step for
performing a specified function without the recital of structure, material, or acts in support thereof, and such
claim shall be construed to cover the corresponding structure, material, or acts described in the specification
and equivalents thereof." 35 U.S.C. s. 112, para. 6. However, if an inventor claims his invention under this
provision and fails to disclose adequate structure or acts for performing the function, the patent is invalid as
indefinite.

Use of the word "means" creates a rebuttable presumption that s. 112, para. 6 applies, whereas failure to use
the word "means" creates a presumption that it does not apply. Personalized Media Comm., LLC v. Int'l
Trade Comm'n, 161 F.3d 696, 703-04 (Fed.Cir.1999). In deciding whether either presumption has been
rebutted, courts focus on "whether the claim as properly construed recited sufficiently definite structure to
avoid the ambit of s. 112, para. 6." Personalized Media, 161 F.3d at 704. The Court finds a person of
ordinary skill in the art would understand the term "transition unit" to connote sufficient structure. At the
hearing, Via's expert testified that one of ordinary skill in the art could figure out the structure of the
transition unit in Figure 6A from the flowchart depicted in Figure 9 of the patent, although he had not yet
figured it out. See Markman Transcript, at Vol. 3, p. 45-46. Therefore, Via has not rebutted the presumption
that section 112, paragraph 6 does not apply to this term, and its objection is overruled.

C. transition means

Via objects to the construction of "transition means ..." because the function of the means-plus-function
does not specify the term causes two physical register files to logically appear to software executing on the
processor as a single logical register file. However, the Court finds that language is not necessary in the
description of the term's function because it is already included in the claim language itself.

Via also objects to the exclusion of some of the steps in Figures 8 and 9 in the construction of the structure
of the term. However, the patent specification demonstrates not all steps in Figures 8 and 9 will be used in
all embodiments of the invention. '748 Patent, at 28:27-41. Accordingly, this objection is overruled.

D. causing said first physical register file and said second physical register file to appear to software
as a single logical register file

Via contends the Special Master should have construed this term as step-plus-function under section 112,

paragraph 6. The Special Master did not construe this term at all, although he construed the terms register,
register file, physical register file and logical register file.

In method claims where patentees describe a step for performing a certain function or process without
describing corresponding acts demonstrating how the function is accomplished, s. 112, para. 6 1s implicated.
Seal-Flex, Inc. v. Athletic Track & Court Constr., 172 F.3d 836, 849-50 (Fed.Cir.1999, Rader, J.,
concurring); O.1. Corp.v. Tekmar Co. Inc., 115 F.3d 1376, 1582-83 (Fed.Cir.1997). The Federal Circuit has
acknowledged a rebuttable presumption that terms that do not contain the "step for" language will not
invoke s. 112, para. 6. Masco Corp. v. United States, 303 F.3d 1316, 1326 (Fed.Cir.2002). The Federal
Circuit also indicated its unwillingness to apply s. 112, para. 6 without the "step for" language in Masco:
"Where the claim drafter has not signaled his intent to invoke s. 112, paragraph 6 by using the 'step[s] for'
language, we are unwilling to resort to that provision to constrain the scope of coverage of a claim
limitation without a showing that the limitation contains nothing that can be construed as an act. Method
claims are commonly drafted, as in this case, by reciting the phrase [steps of] followed by a list of actions
comprising the method claimed. An application of s. 112, paragraph 6 in the present circumstances would
render the scope of coverage of these method claims uncertain and disrupt patentees' settled expectations
regarding the scope of their claims." Masco Corp., 303 F.3d at 1327. Additionally, the simple fact that a
claim term ends in "-ing" does not render it a step-plus-function term. Tekmar, 115 F.3d at 1583 ("If we
were to construe every process claim containing steps described by an "ing" verb, such as passing, heating,
reacting, transferring, etc. into a step-plus-function limitation, we would be limiting process claims in a
manner never intended by Congress."). In fact, this Court has not found (and Via has not provided) a
Federal Circuit case applying s. 112, para. 6 where the "step for" language is absent.

While the Court acknowledges the verb "causing" fails to describe a process as concrete as "heating" or
"reacting," it finds Via has not rebutted the presumption against the application of s. 112, para. 6. This
method is claimed as any other process claim, and the Federal Circuit has affirmed its unwillingness to
apply the step-plus-function limitation to all method claims. The patent specification clarifies the acts
through which the process is accomplished. E.g., 748 Patent, 25:3-11. Because the meaning of the term is
plain in light of the constructions of "register," "register file," "physical register file" and "logical register
file," the Court finds no construction is necessary. Via's objection is overruled.

E. transitioning to said packed data mode; transitioning to said floating point mode

Via objects to the Special Master's construction of these terms on the grounds that he did not construe these
terms as step-plus-function terms. Again, Via has not rebutted the presumption that s. 112, para. 6 only
applies when the "step for" language is present. The claim language describes a method for a data
processing apparatus to execute instructions by (1) receiving an instruction; (2) determining whether it is a
floating point or packed data instruction and whether the processor is in floating point or packed data mode;
and (3) transitioning to the appropriate mode depending on what type of instruction it received; and (4)
executing the instruction on the appropriate set of registers. 748 Patent, claim 62. While these are not
physical or tangible acts, they are acts performed by a microprocessor. The specification and figures in the
patent describe the acts as part of a flowchart. '748 Patent, 30:44-46, 31:28-30; Figs. 7A & 7C. The Court
finds the Special Master's construction, in light of the surrounding claim language and specification and
diagrams in the patent, adequately describes the act performed by the claim terms. Via's objection is
therefore overruled.

F. stack reference unit; fixed register file unit; non-stack reference unit

Via objects to the Special Master's use of the word "allows" in his construction of the above terms, arguing
the construction could allow the claim term to performs other functions in addition to those claimed. The
Court finds the word "allows" is appropriate in light of the description in the claim language of the functions
these units perform. Moreover, Via's proposed constructions of these terms are confusing, and the Court
overrules the objections.

G. execution unit ... to perform floating point operations ...

Via objects to the Special Master's recommended construction ("firmware, microcode and/or circuitry within
the processor that performs operations on data") because it does not specify the execution unit operates on
both floating point and integer data. Because the claim language demonstrates the execution unit performs
both floating point and integer operations, the Court sustains Via's objection and amends the construction
accordingly.

IV.'679 Patent
A. functional blocks

Via objects to the Special Master's recommended construction of "functional block" because it states the
circuits and microcode are "dedicated to performing a specific function." Via suggests replacing that phrase
with the words "for performing a specific function." The Court finds the Special Master's language simply
makes Via's description clearer by showing the circuitry and microcode within a functional block perform a
specific function.

Via also objects to the statement "[e]ach block may be individually turned on or off," arguing "turned on or
off" is ambiguous and the words "enabled/disabled" should be used instead. Via contends "turned on or off"
means removing power, instead of disabling the ability of the functional block to perform its intended
function. The Court finds "turned on or off" does not necessarily mean power is removed from the
functional block; instead, it indicates the block is unable to perform its function. Additionally, the language
is clearer for a jury than "enabled/disabled." Moreover, the "enabled/disabled" language still remains in the
claim language, and need not appear twice: "A microprocessor, having a plurality of functional blocks, the
plurality of functional blocks being individually enabled/disabled...." '679 Patent, claim 1. Via raises the
same objection to the construction of the terms "enable/disable signals," "partly determinative" and
"processor instruction for writing a configuration command to said feature control register," and the Court
overrules the objection to those claim terms as well.

B. fuse array control

Via objects that the Special Master's construction of "fuse array control" limits the invention to the preferred
embodiment by requiring the fuse array control to send a signal to the plurality of functional blocks. Via
contends the fuse array need not be directly connected to the functional blocks, as is depicted in Figure 3,
the preferred embodiment. However, the Special Master's construction does not require a direct connection
or even require that the signal be sent directly from the fuse array to the functional blocks; it merely requires
the signal to originate from the fuse array and arrive at the functional blocks. The recommended
construction allows for intermediate logic. Via raises the same objection to the construction of
"enable/disable signals," and the objection is overruled as to that term as well.

Intel objects to the Special Master's failure to specify the fuse array control is "distinct" from the rest of the

microprocessor. The Court finds neither the claim language nor the diagrams and specification in the patent
include such a requirement and overrules the objection.

C. feature control register

Intel objects to the construction of "feature control register" as a register that "holds at least one bit
indicative of whether a functional block" should be turned on or off. Intel contends the register must hold at
least two bits and must turn on or off more than one functional block. Intel points to the language in claim 1
regarding "the plurality of functional blocks being individually enabled/disabled." '679 Patent, claim 1.
However, the claims specify the functional blocks are treated individually. Even if this "plurality" language
in claim 1, upon which claim 12 is dependent, were a requirement, it is explicitly stated in claim 1 and need
not be reiterated in the construction of "feature control register" in claim 12. Intel's objection is therefore
overruled.

D. processor instruction for writing a configuration command to said feature control register

Via objects to the Special Master's construction of this term because it does not clearly indicate the
processor instruction need not address all functional blocks. The construction states the processor instruction
identifies "which functional blocks are turned on and which are turned off." It does not even hint that all
functional blocks must be enabled or disabled. Accordingly, Via's objection is overruled.

E. logically merging

Intel objects that the construction of "logically merging" must be limited to exclusive-or operations, because
that is the only example of "logically merging" given in the patent. However, the patent specification
explicitly states the exclusive-or operation is only one embodiment of the invention. ' 679 Patent, 5:15-26
("In one embodiment, the state of the fuse array 422 that was read into the TEMP register 426 is
complemented, and then XOR'ed with the default value stored in the FCR register 428."). Via should not be
limited to an example described in the patent. The exclusive-or operation is included in the construction,
which simply states "logical operations" that involve combining values. The "merging" requirement is
reflected in the "combining" language in the construction. Accordingly, the Court overrules Intel's objection.

V. '043 Patent

Via objects to the Special Master's failure to find this patent indefinite. The Special Master submitted his
Report and Recommendation regarding the '043 summary judgment on March 5, 2003, and the parties have
not yet submitted objections. The Court will discuss the application of section 112, paragraph 6 to this
patent and the '423 patent when it enters its order accepting or rejecting the Special Master's Report and
Recommendation.

Intel objects that gate 47 in Figure 5 is not included in the structure for the term "system for generating
memory requests...." Upon reviewing the post- Markman briefs and charts, the Court notes Intel did not
include gate 47 in its proposed structure, although Via did include it. Nonetheless, the Court sustains the
objection, finding gate 47 should be included in the construction and amending it accordingly.

VI. '423 Patent

Via objects to the Special Master's listing of "possible structure" for the means-plus-function terms that are

the subject of Via's summary judgment motion. The Court will change this language after it rules on the
summary judgment motion, upon receipt of the objections to the Report and Recommendation.

A. transition microcode program

Via contends the construction of the term "transition microcode program" should include the requirement
that the program "unconditionally transitions." The Special Master construed the term "transition microcode
program" only, leaving the "unconditionally transitioning" language unconstrued in the claim language. The
Court finds the presence of the unconditional language in the claim language is sufficient, and the
construction of "transition microcode program" need not reiterate it. Accordingly, Via's objection is
overruled.

B. means for halting

Via objects that the function of "means for halting" is construed as "resetting the microprocessor" instead of
"halting the microprocessor." The Court finds this construction was a typographical error and corrects it
accordingly.

C. reset means

Via objects to the inclusion of microcode program 26 in Figure 2 of the patent as possible structure for
"reset means...." The Court agrees no microcode should be included as structure and rejects the Report and
Recommendation of the Special Master on this point. The patent specification states the reset function is
"hardware oriented," and the prosecution history demonstrates Intel represented to the patent offices that the
RESET pin utilizes hardware, while the INIT pin utilizes microcode. See '423 Patent, 5:51-55; Sept. 3
Hughes Affidavit, Ex. F at 7-8, 94-95, 108 & 122. Intel went out of its way to limit the reset function to
hardware in order to get its application granted, and it must be bound by those limitations in claim
construction. Therefore, Via's objection is sustained.

In accordance with the foregoing:

IT IS ORDERED that the Report and Recommendations of the Special Master regarding the patents-in-suit
[# 272-29] are ACCEPTED in part and REJECTED in part, as discussed above;

IT IS FURTHER ORDERED that the attached construction of the contested patent claims will be
incorporated into any jury instructions given in the above-styled cause and will be applied by the Court in
ruling on the issues raised in summary judgment motions;

IT IS FINALLY ORDERED that the parties SHALL FILE a chart listing the agreed-upon terms and the
agreed construction of those terms by March 14, 2003, to be incorporated into the attached chart.

UNITED STATES PATENT NO. 6.161.188

Actual Claim Language Court's Claim Construction
CLAIM 1
A microprocessor having a configurable core-to-bus clock ratio, the A fuse is a circuit element that
configurable core-to-bus clock ratio determining a first frequency of a provides an electrical

core clock signal within the microprocessor, the core clock signal being connection between two

derived from a bus clock signal operating at a second frequency that is
provided to the microprocessor from an external source, the
microprocessor comprising:

a fuse, configured to provide a permanent state that prescribes the
configurable core-to-bus clock ratio;

points, but which may be
irreversibly destroyed thereby
electrically disconnecting the
two points.

A permanent state is a state
that is retained upon removal
of power to the
MiCroprocessor.

buffer/control logic, coupled to said fuse, configured to accept said
permanent state and to direct the microprocessor to either set the
configurable core-to-bus clock ratio according to the states of a plurality
of clock ratio signals or to ignore said states and to set the configurable
clock ratio to a fixed multiple of the second frequency.

Buffer/control logic: No
construction necessary.

Ignore and fixed: No
construction necessary.

CLAIM 6

The microprocessor as recited in claim 5, wherein, if said fuse is in said
blown state, the second frequency is determined to be the fixed multiple
of the first frequency, without regard to said states of said plurality of
clock ratio signals. [Claim 5. The microprocessor as recited in claim 2,
wherein, if said fuse is in said intact state, the second frequency of the
core clock signal is determined to be a first multiple of said first
frequency, said multiple being prescribed by a plurality of clock ratio
signals.] [Claim 2. The microprocessor as recited in claim 1, wherein said
permanent state comprises and intact state or a blown state.]

A fuse is a circuit element that
provides an electrical
connection between two
points, but which may be
irreversibly destroyed thereby
electrically disconnecting the
two points.

A permanent state is a state
that is retained upon removal
of power to the
MIiCroprocessor.

CLAIM 9

An apparatus in a microprocessor for determining a core clock frequency
of a core clock signal, the core clock signal being derived from a bus
clock signal that is provided from without the microprocessor, the
apparatus comprising: ratio determination logic, configured to provide a
fixed/variable clock ratio signal; and

buffer/control logic, coupled to said ratio determination logic, configured
to direct the microprocessor to set a core-to-bus clock ratio based upon
said fixed/variable clock ratio signal and a plurality of clock ratio signals,

wherein, if said fixed/variable clock ratio signal indicates a fixed core-to-bus
clock ratio, said buffer control logic directs the microprocessor to disregard

said plurality of clock ratio signals.

Ratio determination logic is
a logic device whose state can
be permanently established,
even when power is removed
from the microprocessor.

A fixed/variable clock ratio
signal is an electrical signal
that indicates that a variable
core-to-bus clock ratio should
be used, or is permanently set
to indicate that a fixed core-
to-bus clock ratio should be
used.

CLAIM 10

The apparatus as recited in claim 9, wherein said ratio determination logic
comprises: a logic device, having a default state or an altered state, said
states persisting when power is removed from the microprocessor; wherein,
when said default state is provided by said logic device, said plurality of
clock ratio signals prescribes a variable core-to-bus clock ratio for the
MiCroprocessor.

Ratio determination logic is a
logic device whose state can
be permanently established,
even when power is removed
from the microprocessor.

CLAIM 12

The apparatus as recited in claim 9, further comprising:

a selective clock multiplier, coupled to said buffer/control logic.
configured to receive the bus clock signal and to generate the core clock
signal,

wherein a first frequency of the core clock signal is a multiple of a second
frequency of the system bus clock signal.

A selective clock multiplier is
circuitry that takes the output
of the buffer/control clock
signal, and clock ratio signals
as inputs and generates a
processor clock signal as an
output.

CLAIM 15

The apparatus as recited in claim 12, wherein, if said ratio determination
logic directs the microprocessor to vary said core-to-bus clock ratio, said
selective clock multiplier multiplies said second frequency of the bus
clock signal by a factor prescribed by said plurality of clock ratio signals
to set said first frequency of the core clock signal.

Ratio determination logic is
a logic device whose state can
be permanently established,
even when power is removed
from the microprocessor.

A selective clock multiplier is
circuitry that takes the output
of the buffer/control clock
signal, and clock ratio signals
as inputs and generates a
processor clock signal as an
output.

CLAIM 16

A microprocessor having a core-to-bus clock ratio, the core-to-bus clock
ratio determining a first frequency of a core clock signal within the
microprocessor, the core clock signal being derived from a bus clock
signal provided from an external source, the microprocessor comprising:

ratio determination logic, configured to provide a fixed/variable clock
ratio signal, said ratio determination logic comprising:

Ratio determination logic is
a logic device whose state can
be permanently established,
even when power is removed
from the microprocessor.

A fixed/variable clock ratio
signal is an electrical signal
that indicates that a variable
core-to-bus clock ratio should
be used, or is permanently set
to indicate that a fixed core-to-
bus clock ratio should be used.

a fuse, configured to provide an electrical signal path for said fixed/variable A fuse is a circuit element that

clock ratio signal; provides an electrical
connection between two
points, but which may be
irreversibly destroyed thereby
electrically disconnecting the

two points.
buffer/control logic, coupled to said ratio determination logic, configured Ratio determination logic is a
to convert a state of said electrical signal path into a voltage level, said logic device whose state can
voltage level being in a default state if said fuse is intact and in an altered be permanently established,
state otherwise; and even when power is removed

from the microprocessor.

a selective clock multiplier, coupled to said buffer/control logic, configured A selective clock multiplier is
to receive the bus clock signal and said voltage level, for generating the core circuitry that takes the output
clock signal, wherein the first frequency of the core clock signal is a multipleof the buffer/control clock

of a second frequency of the bus clock signal, and wherein, when said signal, and clock ratio signals
voltage level is in said altered state, said selective clock multiplier is as inputs and generates a
unresponsive to clock ratio signals, said clock ratio signals prescribing said processor clock signal as an
multiple when said voltage level is in said default state. output.

CLAIM 19
An apparatus in a microprocessor for generating a core clock signal Fixed: No construction
having a configurable frequency or a fixed frequency, the apparatus necessary.
comprising:

a selective clock multiplier, for receiving a system bus clock signal, and for
generating the core clock signal from said system bus clock signal, wherein
a first frequency of the core clock signal is a multiple of a second frequency
of said system bus clock signal; A selective clock multiplier is circuitry that
takes the output of the buffer/control clock signal, and clock ratio signals as
inputs and generates a processor clock signal as an output.

buffer/control logic, coupled to said selective clock multiplier, for A fuse is a circuit element that
enabling/disabling a plurality of clock ratio signals to prescribe said multiple provides an electrical
during normal operation of the microprocessor; and a fuse, coupled to said connection between two

buffer/control logic, capable of being blown during fabrication of the points, but which may be
microprocessor, wherein blowing said fuse causes said buffer/control logic toirreversibly destroyed thereby
disable said plurality of clock ratio signals and to fix said multiple to a electrically disconnecting the
predetermined value. two points.

CLAIM 21
The apparatus as recited in claim 19, further comprising: Test control logic is circuitry

that, in response to a signal
from test equipment, provides
a signal that directs the
selective clock multiplier to
override the fixed core-to-bus
clock ratio and re-enable
control of the clock ratio via
the control signals.

test control logic, coupled to said selective clock multiplier, for enabling
said plurality of clock ratio signals to prescribe said multiple during
test of the microprocessor, regardless of whether said fuse is blown.

UNITED STATES PATENT NO. 6,253,311

Actual Claim Language Court's Claim Construction
CLAIM 1
A microprocessor comprising: an integer A register is a storage area in a microprocessor

register file configured to store a plurality of configured to temporarily store data.

integers;

A register file is a set of registers along with read and
write circuitry.

An integer register file configured to store a plurality
of registers is a register file which is set up to store data
in integer format.

a floating point register file, A floating point register file ... configured to store a
plurality of floating point numbers, said floating point
register file also configured to store data in integer
format is a register file which is set up to store data in
floating point format and also to store data in integer
format.

coupled to said integer register file, configured Coupled to means connected either directly or indirectly.

to store a plurality of floating point numbers,

said floating point register file also configured to

store data in integer format; and

a first conversion instruction, An instruction is a programming statement that indicates
an operation for a processor to perform.

A conversion instruction is a programming statement that
indicates an operation for a processor to change a floating
point number into an integer.

provided by a translator, for converting a A translator is hardware that receives an instruction as an

first one of said plurality of floating point input and as a result outputs one or more operations for a

numbers within said floating point register file functional unit to perform.

into a first integer, and for temporarily

storing said first integer within said floating

point register file.

Temporarily storing: No construction necessary.

CLAIM 3
The microprocessor as recited in claim 2 wherein A register is a storage area in a microprocessor
each of said plurality of integer registers store configured to temporarily store data.
16 or 32-bit integer data.

CLAIM 10
The microprocessor as recited in claim 5 wherein A register is a storage area in a microprocessor
at least one of said floating point registers is configured to temporarily store data.

configured to store said first integer in either

16, 32 or 64-bit format.

CLAIM 14

The microprocessor as recited in claim 1 wherein A move instruction is a programming statement that
said translator provides a first move instruction indicates an operation for a processor to move data

for moving said first integer from said floating
point register file to said integer register file .

between the floating point register file and the integer
register file.

CLAIM 18

The microprocessor as recited in claim 1
wherein said translator provides a second
move instruction for moving a second integer
from said integer register file to said floating
point register file.

A register file is a set of registers along with read and
write circuitry.

A move instruction is a programming statement that
indicates an operation for a processor to move data
between the floating point register file and the integer
register file.

CLAIM 19

The microprocessor as recited in claim 18
wherein said second integer is stored into said
floating point register file in integer format.

A register file is a set of registers along with read and
write circuitry.

CLAIM 21

The microprocessor as recited in claim 1
wherein said first integer is transferred from
said floating point register file to said integer
register file, without first being stored in
memory.

A register file is a set of registers along with read and
write circuitry.

UNITED STATES PATENT NO. 5,701,508

Actual Claim Language Court's Claim Construction
CLAIM 1
In a data processing apparatus, a method for executing instructions An instruction type is a set

comprising the steps of:

of instructions with a
common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an
intrinsic feature of the
instruction.

executing a first set of instructions of a first instruction type

on the contents of a single logical register file, wherein said single logical A register is a storage area

register file is operated as a flat register file while executing said first set in a microprocessor

of instructions; and configured to temporarily
store data.

Executing a first instruction of a second instruction type also on the A register file is a set of

contents of said single logical register file, wherein said single logical registers along with read and

register file 1s operated as a stack referenced register file while executing
said first instruction.

write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 2

The method of claim 1 further comprising the step of:

Altering a plurality of tags corresponding to said single logical register
file to a non-empty state sometime between starting said step of executing
said first set of instructions and completing said step of executing said first
instruction of said second instruction type, and wherein said plurality of
tags identify whether registers in said single logical register file are empty
or non-empty.

Altering a plurality of tags:
No construction necessary.

A register is a storage area
In a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer’'s/operating
system's perspective.

An instruction type is a set
of instructions with a
common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an
intrinsic feature of the
instruction.

CLAIM 3

The method of claim 2, wherein said step of altering is performed in response Altering: No construction

to either attempting to execute said first instruction or executing the first of

necessary.

said first set of instructions .

CLAIM 4
The method of claim 2, wherein said step of altering is performed in between An instruction type is a set
said step of executing said first set of instructions and executing said first of instructions with a
instruction of said second instruction type. common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an
intrinsic feature of the
instruction.
CLAIM 5
The method of claim 2, wherein said step of altering is performed in response
to attempting to execute the first of said first set of instructions.
CLAIM 6
The method of claim 1 further comprising the step of: An instruction type is a set
of instructions with a
common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an
intrinsic feature of the
instruction.
altering a top of stack indication to an initialization value sometime A register is a storage area
between starting said step of executing said first set of instructions and In a microprocessor
completing said step of executing said first instruction of said second configured to temporarily
instruction type, wherein said top of stack indication identifies one store data.
register in said single logical register file as a current top of stack
register.
A register file is a set of
registers along with read and
write circuitry.
A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.
A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.
CLAIM 7
The method of claim 1 further comprising the step of: A register is a storage area

in a microprocessor
configured to temporarily
store data.

writing, in a sign and exponent field of each register in said single logical A register file is a set of

register file that is written to during the step of executing said first set of
instructions, a value indicating either not a number or infinity, sometime
between starting said step of executing said first set of instructions and
starting said step of executing said first instruction of said second
instruction type.

registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

An instruction type is a set
of instructions with a
common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an
intrinsic feature of the
instruction.

CLAIM 8

The method of claim 1, wherein each tag in said set of tags corresponds to
a different register in said single logical register file and identifies
whether said corresponding register is empty or non-empty.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 9

The method of claim 1, wherein said step of executing said first instruction
of said second instruction type further comprises the steps of:

An instruction type is a set
of instructions with a
common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an

copying data contained in said single logical register file into a memory.

intrinsic feature of the
instruction.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 10

The method of claim 2, wherein said step of altering is performed in response Altering: No construction

to executing each instruction in said first set of instructions.

necessary.

CLAIM 11

The method of claim 1, wherein said step of executing said first set of
instructions further comprises the steps of performing packed operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data
elements, each of which
represents a separate value.

CLAIM 12

The method of claim 1, wherein said step of executing said first set of
instructions further comprises the steps of performing packed integer
operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data
elements, each of which
represents a separate value.

CLAIM 13

The method of claim 1, wherein said step of executing said first set of
instructions further comprises the steps of performing packed floating point
operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data

elements, each of which
represents a separate value.

CLAIM 14

The method of claim 1, wherein said second instruction type are instructions
that cause floating point operations to be performed.

An instruction type is a set
of instructions with a
common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an
intrinsic feature of the
instruction.

CLAIM 15

The method of claim 1, wherein said second instruction type are instructions
that cause scalar operations to be performed.

An instruction type is a set
of instructions with a
common data format, register
addressing format or other
attribute assigned to a group
of instructions based on an
intrinsic feature of the
instruction.

CLAIM 17

In a data processing apparatus, a method for executing instructions
comprising the steps of:

Executing a set of packed instructions and a set of floating point
instructions on the contents of a single logical register file

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

that is at least partially aliased,

Wherein said set of packed data instructions is executed prior to said set of
floating point instructions, wherein a plurality of tags correspond to said
single logical register file; and

A logical register file is a
register file that is seen from
the
user's/programmer’'s/operating
system's perspective.

Aliased means that two or
more different types of
instructions appear to
software to operate on a
single logical register file.
Partially alias means that
during a transition, only those
registers implementing a
single logical register file that

contain useful data are copied
from one physical register file
to another.

Altering at least those of said plurality of tags corresponding to aliased
registers in said single logical register file to a non-empty state sometime
between attempting to execute the first of said set of packed data instructions
and completing execution of the first of said set of floating point instructions,
and wherein said plurality of tags identify whether registers in said single

logical register file are empty or non-empty.

No construction necessary.

CLAIM 18

The method of claim 17, wherein said step of executing comprises the steps

of:

executing said set of packed data instructions on said single logical
register file as a fixed register file; and executing said set of floating
point instructions on said single logical register file as a stack referenced

register file.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 19

The method of claim 17, wherein said step of executing comprises the steps

of:

executing said set of packed data instructions to perform packed integer
operations; executing said set of floating point instructions to perform scalar

floating point operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data
elements, each of which
represents a separate value.

CLAIM 20

The method of claim 17, wherein said step of executing comprises the steps
of: executing said set of packed data instructions to perform packed floating
point operations; executing said set of floating point instructions to perform

scalar floating point operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data

elements, each of which
represents a separate value.

CLAIM 21

In a data processing apparatus, a method for implementing partial context
switching when executing scalar and packed data instructions comprising
the steps of:

receiving an instruction belonging to a first routine that is either one of said
scalar or said packed data instructions;

determining that a single logical register file for executing both said scalar
and packed data instructions is unavailable due to a partial context switch;
and

A register is a storage area
In a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

if said single logical register file is unavailable, then performing the steps
of: Interrupting execution of said first routine; and executing a second
routine to copy the contents of said single logical register file into a
memory;

Otherwise, executing said instruction on said single logical register file.

CLAIM 22

The method of claim 21 further comprising the steps of:

Determining if a scalar emulation indication is in an emulation state;

A scalar emulation
indication is an indicator of
floating point unit
availability.

if said scalar emulation indication is in said emulation state, then
performing the steps of: Interrupting execution of said first routine; if said
instruction is one of said scalar instructions, executing said second routine;
and

Otherwise, said instruction is one of said packed data instructions and
executing a third routine rather than said second routine.

CLAIM 23

The method of claim 21, wherein said step of executing said instruction
further includes the steps of:

A register is a storage area
In a microprocessor
configured to temporarily
store data.

If said instruction is one of said packed data instructions, then performing
the steps of: determining if said instruction causes a packed data item to be
written to said single logical register file;

If said instruction causes said packed data item to be written to said single
logical register file, then performing steps of:

writing said packed data item in a mantissa field of a register in said
single logical register file; and

writing a value representing not a number or infinity in a sign field and an
exponent field of said register.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 24

The method of claim 21, wherein said step of executing said instruction
further includes the steps of:

If said instruction is a transition instruction of said packed data
instructions,

Transition instruction of
said packed data
instructions means an
instruction used to indicate
the end of a block of one or
more packed data
instructions.

Then altering each tag in a set of tags to an empty state, wherein each tag
in said set of tags corresponds to a different register in said single logical
register file and identifies whether said corresponding register is empty or
non-empty if said instruction is not said transition instruction but is one of
said packed data instructions, then altering said set of tags to a non-empty
state.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 26

The method of claim 21, wherein said step of executing said instruction
further includes the steps of:

A register is a storage area
in a microprocessor
configured to temporarily

if said instruction if one of said packed data instructions, then altering a
set of tags to a non-empty state if one of said scalar instructions was
executed more recently than one of said packed data instructions, wherein
each tag in said set of tags corresponds to a different register in said
single logical register file and identifies whether said corresponding
register is empty or non-empty; and

store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

if said instruction is a transition instruction of said packed data
instructions, then altering said set of tags to a empty state .

Transition instruction of
said packed data
instructions means an
instruction used to indicate
the end of a block of one or
more packed data
instructions.

CLAIM 30

The method of claim 21, wherein said scalar instructions are for performing
scalar floating point operations and said packed data instructions are for
performing packed integer operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data
elements, each of which
represents a separate value.

CLAIM 31

The method of claim 21, wherein said scalar instructions are for performing
scalar floating point operations and said packed data instructions are for
performing packed floating point operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data
elements, each of which
represents a separate value.

CLAIM 32

In a data processing apparatus, a method for executing scalar and packed
data instructions comprising the steps of: Receiving an instruction that is
either a packed data instruction or a scalar instruction; Determining that
execution of scalar instructions should be emulated and/or that a single

A register is a storage area
in a microprocessor
configured to temporarily
store data.

logical register file for executing both said scalar and packed data
instructions is unavailable due to a partial context switch; if said
instruction is said scalar instruction, then executing a first routine; and if
said instruction is said packed data instruction, then performing steps of: if
said single logical register file is unavailable, then executing said first
routine, and if execution of said scalar instructions should be emulated,
then executing a second routine.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer’'s/operating
system's perspective.
Determining that execution
of scalar instructions should
be emulated: No
construction necessary.

CLAIM 33

The method of claim 32, wherein said scalar instructions are for performing
scalar floating point operations and said packed data instructions are for
performing packed integer operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data
elements, each of which
represents a separate value.

CLAIM 34

The method of claim 32, wherein said scalar instructions are for performing
scalar floating point operations and said packed data instructions are for
performing packed floating point operations.

Packed operations are
operations on packed data, a
data format in which the bits
used to represent a single
value are broken into a
number of fixed sized data
elements, each of which
represents a separate value.

CLAIM 35

In a data processing apparatus, a method for executing packed data
instructions comprising the steps of:

A register is a storage area
in a microprocessor
configured to temporarily
store data.

receiving a packed data instruction that causes a packed data item to be
written to what at least logically appears to software as a register in a
logical register file that is also used for saving floating point data;
writing said packed data item in a mantissa field of said logical register
file; and writing a value representing not a number or infinity in a sign

field and an exponent field of said logical register.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

UNITED STATES PATENT NO. 5,835,748

Actual Claim Language

Court's Claim Construction

CLAIM 1

A processor comprising:

a first physical register file for executing scalar
instructions;

a second physical register file for executing packed
data instructions;

A register is a storage area in a microprocessor
configured to temporarily store data.

A register file is a set of registers along with
read and write circuitry.

A physical register file is a register file that is
physically implemented as circuitry in the
MmiCroprocessor.

A logical register file is a register file that is seen
from the user's/programmer's/operating system's
perspective.

a transition unit

A transition unit is firmware, microcode and/or
circuitry that causes the transition between
floating point mode and packed data mode.

Configured to cause said first physical register file and
said second physical register file to logically appear to
software executing on said processor as a single
logical register file;

A register is a storage area in a microprocessor
configured to temporarily store data.

A register file is a set of registers along with
read and write circuitry.

A physical register file is a register file that is
physically implemented as circuitry in the
MmiCroprocessor.

A logical register file is a register file that is seen
from the user's/programmer's/operating system's
perspective.

an internal write-back cache coupled to the control
unit;

a selective re-initialization microcode program including
microcode instructions to selectively re-initialize registers

selected to place the microprocessor in its initial mode of
operation while maintaining the validity of the contents of
the internal write-back cache;

transition means for unconditionally transitioning Transition means for unconditionally

from the second mode to the initial mode while transitioning from the second mode to the
maintaining the validity of the contents of the initial mode while maintaining the validity of
internal write-back cache, said transition means the contents of the internal write-back cache is
including a means-plus-function term:

Function: Unconditionally transitioning
Possible Structure: Figure 2, INIT pin 14, Control
Unit 16, "program for converting from second
mode to initial mode".

an external pin coupled to the control unit to assert a high Coupled to means connected directly or

priority interrupt, and indirectly via hardware.

means, responsive to said high priority interrupt, for Means ... for halting operation of the

halting operation of the microprocessor and microprocessor is a means-plus-function term:
executing said selective re-initialization microcode;

and

Function: Halting the microprocessor.
Possible Structure: Circuitry within control unit

16.
reset means including a reset pin coupled to the Coupled to means connected directly or
internal write-back cache and the plurality of indirectly via hardware.

registers for resetting the microprocessor by
resetting the contents of said registers and
invalidating the contents of the internal write-back

cache.
Reset means ... is a means-plus-function term:
Function: Resetting the microprocessor.
Possible Structure: Figure 2, RESET pin, and
control unit 16.

CLAIM 9
The apparatus of claim 7 wherein the reset pin is A reset pin is a pin that is connected via
coupled to the control unit, and said microcode hardware to a plurality of registers and the cache.

memory further comprises an initialization microcode
program, responsive to assertion of the reset pin, for
initializing the microprocessor to the initial mode.
Coupled to means connected directly or
indirectly via hardware.
Actual Claim Language Court's Claim Construction

a stack reference unit, Stack reference unit means
firmware, microcode and/or
circuitry that allows the
registers to be addressed
relative to a top of stack

value.
coupled to said first register file, configured to operate said first physical
register file as a stack, said stack reference unit including a set of tags, each
tags of said set of tags corresponding to a different register in said first
physical register file and identifying whether said corresponding register is in
either a empty state or a non-empty state; and

an fixed register file unit, A fixed register file unit is
firmware, microcode and/or
circuitry that allows the
registers to be addressed as a
flat file.

coupled to said second physical register file, configured to operate said

second physical register file as a fixed register file.

CLAIM 4

The processor of claim 1, wherein: said transition unit is configured to cause Transition instructions are
each tag in said set of tags to be altered to said non-empty state sometime in aone or more instructions used
first interval of time between the start of executing a set of packed data to indicate the end of a block
instructions and the start of executing a set of scalar instructions if a set of of one or more packed data
transition instructions is not executed sometime in a second interval of time instructions.

after the execution of said set of packed data instructions and before the

execution of said set of scalar instructions.

CLAIM 6
The processor of claim 1, wherein: each register in said first physical A register is a storage area
register file corresponds to a different register in said second physical in a microprocessor
register file; and said transition unit is also configured to store, sometime configured to temporarily
between the start of executing a set of packed data instructions and the store data.

start of executing a set of scalar instructions, a value indicating either not a

number or infinity in a sign and exponent field of each register in said first

physical register file whose corresponding register in said second physical

register file was written to during the execution of said set of packed data

instructions.
A register file is a set of
registers along with read and
write circuitry.
A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.
A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.
A transition unit is
firmware, microcode and/or
circuitry that causes the

transition between floating
point mode and packed data
mode.

CLAIM 7

The processor of claim 1, wherein said first and second physical register
files each contain n registers, and said single logical register file contains
n registers.

A register is a storage area
In a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 11

The processor of claim 1, wherein said packed data instructions cause said
processor to perform packed floating point operations.

Packed floating point
operations: No construction
necessary.

CLAIM 12

The processor of claim 1, wherein said packed data instructions cause said
processor to perform packed integer operations.

Packed integer operations:
No construction necessary.

CLAIM 26

A processor comprising:

a first set of physical registers;
a second set of physical registers;

A register is a storage area
In a microprocessor
configured to temporarily
store data.

an execution unit coupled to said first set of physical registers to perform
floating point operations on data stored in said first set of physical
registers, and coupled to said second set of physical registers to perform
integer operations on data stored in said second set of physical
registers;

a transition unit to at least partially alias said first set of physical
registers onto said second set of physical registers;

Execution unit ... means
firmware, microcode and/or
circuitry within the processor
that performs floating point
and integer operations on
data.

A transition unit is
firmware, microcode and/or
circuitry that causes the
transition between floating
point mode and packed data
mode.

Aliased means that two or
more different types of
instructions appear to
software to operate on a
single logical register file.
Partially alias means that
during a transition, only those
registers implementing a
single logical register file that
contain useful data are copied
from one physical register file
to another.

a stack reference unit coupled to said first set of physical registers, said stackStack reference unit means

reference unit including a first storage area having stored therein a top of
stack indication identifying one register in said first set of physical registers;
and

firmware, microcode and/or
circuitry that allows the
registers to be addressed
relative to a top of stack
value.

a non-stack reference unit coupled to said second set of physical registers.

A non-stack reference unit
1s firmware, microcode and/or
circuitry that allows the
registers to be addressed as a
flat file.

CLAIM 27

The processor of claim 26, wherein said transition unit is microcode.

A transition unit is
firmware, microcode and/or
circuitry that causes the
transition between floating
point mode and packed data
mode.

CLAIM 28

The processor of claim 26, wherein said first set of physical registers and
said second set of physical registers logically appear as a single set of
logical registers to software executing on said processor.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating

system's perspective.

CLAIM 29
The processor of claim 26, further comprising:
a second storage area, coupled to said execution unit, having stored Second storage area ...:. No
therein a mode indication identifying either a floating point mode or a construction necessary.

integer mode, said transition unit altering said mode indication to identify said
floating point mode and copying data from said second set of physical
registers into said first set of physical registers in response to receiving one of
a set of floating point instructions when said mode indication identifies said
integer mode, said transition unit altering said mode indication to identify said
integer mode and copying data from said first set of physical registers into
said second set of physical registers in response to receiving one of a set of
integer instructions when said mode indication identifies said floating point

mode.
CLAIM 30

The processor of claim 29, further comprising: A register is a storage area
In a microprocessor
configured to temporarily
store data.

said second storage area also having stored therein a set of dirty A transition unit is

indications in one of a dirty state and a clean state, each dirty indication in firmware, microcode and/or

said set of dirty indications corresponding to a different register in said circuitry that causes the

second set of physical registers; transition between floating
point mode and packed data
mode.

said execution unit, in response to writing data to a selected register in said

second set of physical registers, also altering the dirty indication

corresponding to said selected register to said dirty state, and said transition

unit, in response to receiving one of a set of floating point instructions while

said mode indication identifies said integer mode, also writing a value

indicating not a number or infinity in a sign and exponent field of each

register in said first set of physical registers that corresponds to a register in

said second set of physical registers whose corresponding dirty indication is in

said dirty state.

CLAIM 34
The processor in claim 26, further comprising: Second storage area ...: No

construction necessary.
a second storage area having stored therein a mode indication identifying
either a floating point mode or a integer mode, and a speculative indication
identifying either a speculative state or a non-speculative state;

said transition unit altering said mode indication to identify said integer A register is a storage area
mode, copying data from said first set of physical registers into said In a microprocessor

second set of physical registers, and altering said speculative indication to configured to temporarily
identify said speculative state in response to receiving one of a set of store data.

integer instructions when said mode indication identifies said floating point
mode;

A transition unit is
firmware, microcode and/or
circuitry that causes the
transition between floating
point mode and packed data
mode.

said execution unit coupled to receive said mode indication and said
speculative indication, said execution unit altering said speculative indication

Execution unit means
firmware, microcode and/or

to identify said nonspeculative state in response to executing one of said set ofcircuitry within the processor

integer instructions;

that performs floating point
and integer operations on
data.

said transition unit altering said mode indication to identify said floating
point mode in response to receiving one of a set of floating point
instructions when said mode indication identifies said integer mode; and
said transition unit altering said mode indication to identify said floating
point mode in response to receiving one of a set of floating point
instructions when said mode indication identifies said integer mode; and
said transition unit also copying data from said second set of physical
registers into said first set of physical registers in response to receiving
one of said set of floating point instructions when said mode indication
identifies said integer mode and when said speculative indication identifies
said non-speculative state.

A transition unit is
firmware, microcode and/or
circuitry that causes the
transition between floating
point mode and packed data
mode.

A register is a storage area in
a microprocessor configured
to temporarily store data.

CLAIM 38

The processor of claim 26, wherein said integer operations are packed integerPacked integer operations:

operations.

No construction necessary.

CLAIM 40

A processor comprising:

a first plurality of physical registers for executing scalar instructions;

a second plurality of physical registers for executing packed data instructions;
and

A register is a storage area
In a microprocessor
configured to temporarily
store data.

a transition means coupled to said first and second plurality of
physical registers for causing said first and second plurality of
physical registers to appear to software executing on said processor as
a single logical register file, and for causing a value indicating not a
number or infinity to be written in a sign and exponent field of said first
plurality of physical registers sometime in an interval of time between the
start of executing a set of packed data instructions and the start of
executing a set of said scalar instructions.

Transition means ... is a
means-plus-function term:

Function: Causing the

tranacitinn hativrann Flaatin~

uainiuvlil veciwcelll uuauug
point mode and packed data
mode

Structure: Transition Unit
600, Mode Indication 675,
steps 804, 812,908 and 914.
A register is a storage area in
a microprocessor configured
to temporarily store data.

CLAIM 41

The processor of claim 40, wherein said transition means at least partially
aliases said second plurality of physical registers on said first plurality of
physical registers.

Aliased means that two or
more different types of
instructions appear to
software to operate on a
single logical register file.
Partially alias means that
during a transition, only those
registers implementing a
single logical register file that
contain useful data are copied
from one physical register
file to another.

A register is a storage area in
a microprocessor configured
to temporarily store data.

CLAIM 44

The processor of claim 40, further comprising:

a first means for operating said first plurality of physical registers as a
stack; and

Means for operating said
first plurality of physical
registers as a stack is a
means-plus-function term:
The function is operating the
register file as a stack (i.e.,
addressing relative to a top of
stack value).

The structure is the circuitry
630 shown in figure 6B.

a second means for operating said second plurality of physical registers
as a fixed register file.

Means for operating said
second plurality of physical
registers as a fixed register
file is a means-plus-function
term:

The function is to operate as
a fixed (or directly addressed)
register file. The structure is
the packed data nonstack
reference unit 660 of figure
6A, described in the

specification at col. 24:65-
col. 25:2 of the '748 patent.

CLAIM 48

The processor of claim 40, wherein said packed data instructions cause said

processor to perform packed floating point operations.

Packed floating point
operations: No construction
necessary.

CLAIM 58

In a data processing apparatus, a method for executing instructions
comprising the steps of:

executing a set of scalar instructions on a first physical register file,
operating said first physical register file as a stack;

executing a set of packed data instructions on a second physical register
file; and causing said first physical register file and said second
physical register file to appear to software as a single logical register
file.

A logical register file is a register file that is seen from the
user's/programmer's/operating system's perspective.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

CLAIM 61

The method of claim 58, wherein said step of executing said set of scalar
instructions further comprised the steps of:

Determining if said single logical register file is unavailable due to a
partial context switch;

if said single logical register file is unavailable, then performing the steps
of:

executing a routine to store in a memory data stored in said logical register

file prior to executing said set of scalar instructions.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 62

In a data processing apparatus, a method for executing instructions
comprising the steps of:

receiving a first instruction;

Determining that said first
instruction is either a
floating point instruction or
a packed data instruction:
No construction necessary.
Transitioning to said
floating point mode is
changing to the mode in

Determining that said first instruction is either a floating point
instruction or a packed data instruction;

Determining if a processor containing a first and second set of physical
registers is in either a floating point mode or a packed data mode;

if said first instruction is said floating point instruction, then transitioning to
said floating point mode if said processor is in said packed data mode, and
executing said floating point instruction using said first set of physical
registers; otherwise,

which floating point
instructions execute.

Transitioning to said packed data mode if said processor is in said
floating point mode, and executing said packed data instruction using said
second set of physical registers that is at least partially aliased on said
first set of physical registers such that said first set of physical registers
and said second set of physical registers logically appears to software as a
single logical register file.

Transitioning to said
packed data mode is
switching to the mode in
which packed data
instructions execute.

Aliased means that two or
more different types of
instructions appear to
software to operate on a
single logical register file.
Partially alias means that
during a transition, only those
registers implementing a
single logical register file that
contain useful data are copied
from one physical register
file to another.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

CLAIM 63

The method of claim 62, wherein said step of executing said floating point

A register is a storage area in

instruction using said first set of physical registers and said step of executing a microprocessor configured
said packed data instruction using said second set of physical registers aliased to temporarily store data.

on said first set of physical registers both further comprise the steps of:

determining if said single logical register file is unavailable due to a
partial context switch;

if said single logical register file is unavailable, then performing the steps

of:

interrupting execution of said first instruction;

executing a second routine to store in a memory data stored in said logical
register file;

restarting execution of said first instruction.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer’'s/operating
system's perspective.
Restarting execution: No
construction necessary.

CLAIM 65

The method of claim 62, wherein said step of transitioning to said
floating point mode includes the step of copying data stored in said
second set of physical registers into said first set of physical registers, and
wherein said step of transitioning to said packed data mode includes the
step of copying data stored in said first set of physical registers into said
second set of physical registers.

Transitioning to said
floating point mode is
changing to the mode in
which floating point
instructions execute.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

Transitioning to said
packed data mode is
switching to the mode in
which packed data
instructions execute.

CLAIM 66

The method of claim 62 wherein said step of transitioning to said floating
point mode is performed by microcode and execution is resumed without
executing any non-microcode instructions.

Execution is resumed
without executing any non-
microcode instructions: No
construction necessary.

CLAIM 67

The method of claim 62 wherein said step of transitioning to said packed
data mode is performed by microcode and execution is resumed without
executing any non-microcode instructions.

Transitioning to said
packed data mode is
switching to the mode in

which packed data
instructions execute.
Execution is resumed
without executing any non-
microcode instructions: No
construction necessary.

CLAIM 68

The method of claim 62, wherein said step of transitioning to said
floating point mode further includes the step of:

setting a top of stack indication to an initialization value, said data processing
apparatus operating said first set of physical registers as a stack and said top
of stack indication identifying which of said first set of physical registers is
currently on top of said stack.

Transitioning to said
floating point mode is
changing to the mode in
which floating point
instructions execute.

A register is a storage area in
a microprocessor configured
to temporarily store data.

CLAIM 69

The method of claim 62 wherein: said step of executing said packed data
instruction further includes the steps of: Determining if said packed data
instruction is a transition instruction; if said packed data instruction is said
transition instruction, then altering a last instruction indication to indicate the
last packed data instruction executed was said transition instruction;

Transition instruction is one
or more instructions used to
indicate the end of a block of
one or more packed data
instructions.

otherwise, then altering said last instruction indication to indicate the last
packed data instruction executed was not said transition instruction; and
wherein said step of transitioning to said floating point mode further
includes the step of:

determining whether said last instruction indication indicates the last packed
data instruction executed was the transition instruction;

Transitioning to said
floating point mode is
changing to the mode in
which floating point
instructions execute.

if said last instruction indication indicates the last packed data instruction

A register is a storage area in

executed was the transition instruction, then altering each of a set of tags to ana microprocessor configured

empty state, each register in said first set of physical registers corresponding
to a different one of said set of tags; otherwise, altering each of said set of
tags to a non-empty state.

to temporarily store data.

CLAIM 70

The method of claim 62, wherein: said step of transitioning to said
packed data mode further includes the step of:

altering each dirty indication in a set of dirty indications to indicate a clean
state, each dirty indication in said set of dirty indications corresponding to
a different one of said second set of physical

wherein said step of executing said packed data instruction further includes
the steps of:

Transitioning to said
packed data mode is
switching to the mode in
which packed data
instructions execute.
registers; and A register is a
storage area in a
microprocessor configured to
temporarily store data.

determining if execution of said packed data instruction causes data to be
written to one or more of said second set of physical registers; and

if said packed data instruction causes said processor to write to one or more of

said second set of physical registers, then altering, to a dirty state, those of
said set of dirty indications that correspond to those registers in said second
set of physical registers to which data is written to;

wherein said step of transitioning to said floating point mode further
includes the step of:

identifying a subset of said second set of physical registers, said subset
including those of said second set of physical registers whose corresponding
dirty indication is in said dirty state as dirty registers; and altering a sign and
an exponent field of each register in said subset to indicate not a number of
infinity.

Transitioning to said
floating point mode is
changing to the mode in
which floating point
instructions execute.

A register is a storage area in
a microprocessor configured
to temporarily store data.

CLAIM 71

The method of claim 62, wherein said first set of physical registers is
operated as a stack and said second set of physical registers is operated as
a fixed register file.

A register is a storage area
in a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

CLAIM 76

The apparatus of claim 1, wherein said transition microcode program
selectively re-initializes registers including a CRO register, a EFLAGS

register, an instruction pointer register, segment registers, interrupt descriptor

table registers, and a debug control register.

Transition microcode
program means a firmware
and/or microcode that causes
the transition of the processor
from the second mode of
operation to the initial mode
of operation.

CLAIM 5

The apparatus of claim 1 wherein the reset pin is coupled to the control
unit, and said microcode memory further comprises an initialization
microcode program, responsive to assertion of the reset pin, for initializing
the microprocessor to the initial mode.

A reset pin is a pin that is
connected via hardware to a
plurality of registers and the
cache.

Coupled to means connected
directly or indirectly via
hardware.

CLAIM 7

In a microprocessor having at least two modes of operation including an
initial mode and a second mode, said initial mode being the mode to which
the microprocessor is initialized upon start-up, an apparatus for
transitioning from the second mode to the initial mode including
reinitializing the contents of selected registers, said apparatus comprising:

A control unit is circuitry
that receives and executes
microcode instructions and
receives an interrupt signal.

a microcode memory means for storing microcode; a control unit

coupled to said microcode memory means for executing microcode stored in Coupled to means connected

said microcode memory means; directly or indirectly via
hardware.

a plurality of registers coupled to the control unit; said registers having an Coupled to means connected

initial state that corresponds to the initial mode; directly or indirectly via
hardware.

A processor comprising: A register is a storage area

in a microprocessor
configured to temporarily
store data.

a first physical register file for executing scalar instructions; A register file is a set of
registers along with read and
write circuitry.

a second physical register file for executing packed data instructions, A physical register file is a
wherein each register in said first physical register file corresponds to a register file that is physically
different register in said second physical register file; and implemented as circuitry in

the microprocessor.
a transition unit configured to cause said first physical register file and said A logical register file is a
second physical register file to logically appear to software executing on said register file that is seen from
processor as a single logical register file, and to store, sometime between the the
start of executing a set of packed data instructions and the start of executing a user's/programmer's/operating
set of scalar instructions, a value indicating either not a number or infinity in system's perspective.
a sign and exponent field of each register in said first physical register file
whose corresponding register in said second physical register file was written
to during the execution of said set of packed data instructions.

CLAIM 77

The processor of claim 76, further comprising: Stack reference unit means
firmware, microcode and/or
circuitry that allows the
registers to be addressed
relative to a top of stack
value.

a stack reference unit, coupled to said first physical register file, configured

to operate said first physical register file as a stack; and

an fixed register file unit, coupled to said second physical register file, A fixed register file unit is

configured to operate said second physical register file as a fixed register file. firmware, microcode and/or
circuitry that allows the
registers to be addressed as a

flat file.
CLAIM 87
The processor of claim 76, wherein said packed data instructions cause said Packed floating point
processor to perform packed floating point operations. operations: No construction
necessary.
CLAIM 88

A processor comprising: a first physical register file; A register is a storage area

In a microprocessor
configured to temporarily
store data.

A register file is a set of
registers along with read and
write circuitry.

A physical register file is a
register file that is physically
implemented as circuitry in
the microprocessor.

A logical register file is a
register file that is seen from
the
user's/programmer's/operating
system's perspective.

a stack reference unit, coupled to said first physical register file, configured
to operate said first physical register file as a stack;

Stack reference unit means
firmware, microcode and/or
circuitry that allows the
registers to be addressed
relative to a top of stack
value.

a second physical register file; a fixed register file unit, coupled to said
second physical register file, configured to operate said second physical
register file as a fixed register file;

a transition unit configured to cause said first and second physical register
file to logically appear to software executing on said processor as a single
logical register file, said processor configured to store a plurality of data
types in said single logical register file, said plurality of data types
including scalar floating point and packed integer data.

UNITED STATES PATENT NO. 5,889,679

A fixed register file unit is
firmware, microcode and/or
circuitry that allows the
registers to be addressed as a
flat file.

Actual Claim Language Court's Claim Construction
CLAIM 1
A microprocessor, having a plurality of functional blocks, = Functional blocks are a collection of
the plurality of functional blocks being individually circuits and possibly microcode in a
enabled/disabled, the microprocessor comprising: microprocessor, dedicated to performing a

specific function. Each block may be
individually turned on or off.
Individually enabled/disabled: No
construction necessary.

a fuse array control, coupled to the plurality of functional A fuse array control is a collection of
blocks, said fuse array control selectively signaling the circuitry and possibly microcode, including
plurality of functional blocks to be enabled/disabled, a fuse array, that sends a signal, based on the

said fuse array control having a fuse array; and

a control unit, coupled to said fuse array control, for
reading said fuse array, and indicating to said fuse array
control which of the plurality of functional blocks should be
enabled/disabled.

fuses and inputs from the control unit, to
each functional block that turns the
functional block on or off.

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

A control unit is circuitry, and possibly
microcode, that issues control signals.

CLAIM 4

The microprocessor, as recited in claim 1, wherein said fuse
array control further comprises

A fuse array control is a collection of
circuitry and possibly microcode, including a
fuse array, that sends a signal, based on the
fuses and inputs from the control unit, to
each functional block that turns the
functional block on or off.

a plurality of enable/disable signals.

Enable/Disable Signals are signals sent to
the functional blocks that indicate whether
the functional block should be turned on or
off.

CLAIM 6

The microprocessor, as recited in claim 4, wherein said fuse
array control selectively signals the plurality of functional
blocks to be enabled/disabled via said plurality of
enable/disable signals.

Enable/Disable Signals are signals sent to
the functional blocks that indicate whether
the functional block should be turned on or
off.

CLAIM 11

The microprocessor, as recited in Claim 10, wherein said
open/closed states of said ones of said plurality of fuses is

Partly determinative means the state of the
fuses in the fuse array does not by itself

partly determinative of which of the functional blocks should determine whether a functional block is

be enabled/disabled.

turned on or off.

CLAIM 12

The microprocessor, as recited in claim 1, wherein said fuse
array control further comprises a feature control register,
coupled to said fuse array, into which at least a portion of
the state of said fuse array is stored.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

CLAIM 13

The microprocessor, as recited in claim 12, wherein the
state of said fuse array is stored into said feature control
register upon power up of the microprocessor.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

CLAIM 14

The microprocessor, as recited in claim 13, wherein contents
of said feature control register are indicative of which of the
functional blocks should be enabled/disabled.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

CLAIM 16

The microprocessor as recited in claim 12, wherein contents
of said feature control register are read by said control
unit.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

A control unit is circuitry, and possibly
microcode, that issues control signals.

CLAIM 17

The microprocessor, as recited in claim 16, wherein said
control unit overwrites said contents of said feature
control register.

A control unit is circuitry, and possibly
microcode, that issues control signals.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

CLAIM 18

The microprocessor, as recited in claim 17, wherein said
control unit overwrites said contents of said feature
control register to override enabling/disabling of ones of
the functional blocks specified by the state of said fuse
array.

A control unit is circuitry, and possibly
microcode, that issues control signals.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

CLAIM 19

The microprocessor, as recited in claim 18, wherein if said
control unit does not overwrite said contents of said

feature control register, the plurality of functional blocks
are enabled/disabled based on the state of said fuse array.

A control unit is circuitry, and possibly
microcode, that issues control signals.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

CLAIM 20

The microprocessor, as recited in claim 19, wherein if said
control unit does overwrite said contents of said feature
control register, the plurality of functional blocks are
enabled/disabled based on program instructions executed by
the microprocessor.

A control unit is circuitry, and possibly
microcode, that issues control signals.

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

CLAIM 21

The microprocessor, as recited in claim 20, wherein said
program instructions comprise microcode stored within said
control unit.

A control unit is circuitry, and possibly
microcode, that issues control signals.

CLAIM 23

The microprocessor, as recited in claim 22, wherein said BIOS A feature control register is a register

instructions perform a write to a machine specific register
(MSR), which is said feature control register.

which holds at least one bit indicative of
whether a functional block should be turned
on or off.

CLAIM 24

The microprocessor, as recited in claim 23, wherein said
write to said MSR may be partially or wholly blocked by
said control unit.

Partially or wholly blocked: No
construction necessary.

A control unit is circuitry, and possibly
microcode, that issues control signals.

CLAIM 27

A microprocessor, having a plurality of functional blocks
that are individually enabled/disabled, the microprocessor
comprising:

Individually enabled/disabled: No
construction necessary.

Functional blocks are a collection of

circuits and possibly microcode in a
microprocessor, dedicated to performing a
specific function. Each block may be
individually turned on or off.

a fuse array, fabricated on the die of the microprocessor,
the fuse array comprising a plurality of fuses that may be
individually blown during manufacturing;

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

feature control register, coupled to said fuse array, said
feature control register for selectively enabling/disabling
ones of said plurality of functional blocks; and

A feature control register is a register
which holds at least one bit indicative of
whether a functional block should be turned
on or off.

Functional blocks are a collection of
circuits and possibly microcode in a
microprocessor, dedicated to performing a
specific function. Each block may be
individually turned on or off.

a control unit, coupled to said feature control register, for

A control unit is circuitry, and possibly

reading the state (closed or open) of said plurality of fuses, andmicrocode, that issues control signals.

for storing into said feature control register a value indicative

of which of said plurality of functional blocks are to be
enabled/disabled.

CLAIM 29

The microprocessor, as recited in claim 27, wherein the
plurality of functional blocks are individually

enabled/disabled via signal lines that couple the plurality of

functional blocks to said feature control register.

Signal lines are wires that carry signals.

Enable/disable signal lines are wires that
carry signals indicating whether a functional
block is to be turned on or off.

CLAIM 30

The microprocessor, as recited in claim 27, wherein said
fuse array is coupled to said control unit to allow said
control unit to read the state (closed or open) of each of
said plurality of fuses.

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

A control unit is circuitry, and possibly
microcode, that issues control signals.

CLAIM 35

The microprocessor, as recited in claim 27, wherein said
feature control register comprises enable/disable signal
lines, coupled to each of the plurality of functional blocks,
to selectively enable/disable ones of said plurality of

Signal lines are wires that carry signals.

functional blocks.

Enable/disable signal lines are wires that
carry signals indicating whether a functional
block is to be turned on or off.

CLAIM 38

The microprocessor, as recited in claim 27, wherein said
control unit further comprises a control ROM that stores a
default configuration for the plurality of functional blocks on

the microprocessor.

A control unit is circuitry, and possibly
microcode, that issues control signals.

CLAIM 40

The microprocessor, as recited in claim 27, wherein the
microprocessor further comprises a processor instruction for
writing a configuration command to said feature control

register.

A processor instruction for writing a
configuration command to said feature
control register is a "processor instruction"
that writes values into the feature control
register to specify which functional blocks
are turned on and which are turned off.

CLAIM 41

The microprocessor, as recited in claim 40, wherein said

A feature control register is a register

processor instruction overwrites said feature control register which holds at least one bit indicative of
to selectively enable/disable particular ones of said plurality of whether a functional block should be turned

functional blocks.

on or off.

CLAIM 42

The microprocessor, as recited in claim 41, wherein said

plurality of functional blocks are selectively

enabled/disabled by either a default configuration, said state
of said fuse array, or execution of said processor

instruction.

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

A fuse array is a group of fuses.

CLAIM 43

The microprocessor, as recited in claim 40, wherein said
control unit selectively blocks portions of said overwrites by
said processor instruction to prevent certain ones of said
plurality of functional blocks from being enabled/disabled by

said processor instruction.

Blocks portions: No construction necessary.

CLAIM 45

A method for selectively enabling/disabling functional blocks
on a microprocessor, the microprocessor having a plurality of
fuses, ones of which 4are blown during manufacturing, the

method comprising the steps of:

Functional blocks are a collection of
circuits and possibly microcode in a
microprocessor, dedicated to performing a
specific function. Each block may be
individually turned on or off.

reading the state of the plurality of fuses;

determining from said step of reading which of the functional

A fuse is a circuit element that provides an
electrical connection between two points,
but which may be irreversibly destroyed
thereby electrically disconnecting the two
points.

blocks are to be enabled/disabled;
logically merging results from said step of determining with a Logically merging means performing logical
predetermined configuration for the functional blocks; and operations by combining one or more bits of
enabling/disabling the functional blocks according to the result a plurality of values.
from said step of logically merging.

CLAIM 46
The method for selectively enabling/disabling functional Logically merging means performing logical
blocks on a microprocessor, as recited in claim 45, wherein the operations by combining one or more bits of
method further comprises the step of: executing an instruction a plurality of values.
to overwrite a portion of the results from said step of logically
merging to selectively enable/disable the functional blocks
after the ones of the plurality of fuses are blown.

CLAIM 47

The method for selectively enabling/disabling functional Blocking a portion: No construction
blocks on a microprocessor, as recited in claim 46, wherein ~ necessary.

the method further comprises the step of:

blocking a portion of the overwrite of said step of

executing to prevent certain ones of the functional blocks

from being enabled/disabled by said step of executing.

UNITED STATES PATENT NO. 6,385,735

Actual Claim Language Court's Claim Construction
CLAIM 5
A frequency selecting circuit comprising: Selecting: No construction necessary.
one or more frequency selecting fusible A processor clock frequency is a clock rate for the
elements which can be programmed to select processor expressed as a specific frequency or as a ratio
a processor clock frequency; of a base frequency, such as the frequency of an external
clock.

One or more frequency selecting fusible elements
which can be programmed to select a processor clock
frequency means one or more fuses that can be blown to
select a clock rate for the processor expressed as a
specific frequency, or as a ratio of a frequency.

frequency selection logic coupled to the A fuse is a circuit element that provides an electrical
fusible elements and receiving as an input a connection between two points, but which may be
signal identifying a selected processor clock irreversibly destroyed thereby electrically disconnecting
frequency, said frequency selection logic the two points.

selecting the clock frequency identified by
the fusible elements if one or more of the
fuses are programmed, and otherwise
selecting the clock frequency identified by
the received signal.

A processor clock frequency is a clock rate for the
processor expressed as a specific frequency or as a ratio
of a base frequency, such as the frequency of an external

clock.

Frequency selection logic selecting the clock
frequency identified by the fusible elements if one or
more of the fuses are programmed, and otherwise
selecting the clock frequency identified by the
received signal is circuitry that selects a processor clock
frequency identified by the fuses if one or more of the
fuses are blown, and otherwise selects the processor
clock frequency identified by the received signals.

CLAIM 11

A method of selecting a processor clock
frequency comprising the steps of: selectively
programming fusible elements to encode a
first processor clock frequency; generating a
signal selecting a second processor clock
frequency;

A processor clock frequency is a clock rate for the
processor expressed as a specific frequency or as a ratio
of a base frequency, such as the frequency of an external
clock.

Selectively programming means choosing which, if
any, of the fusible elements to blow. generating a signal
selecting a second processor clock frequency;

selecting the first processor clock frequency
if at least one of the fusible elements has
been programmed, otherwise selecting the
second processor clock frequency.

Selecting the first processor clock frequency if at
least one of the fusible elements has been
programmed, otherwise selecting the second
processor clock frequency means selecting the first
processor clock frequency if at least one of the fuses has
been blown, otherwise selecting the second processor
clock frequency.

UNITED STATES PATENT NO. 5,201,043

Actual Claim Language

Court's Claim Construction

CLAIM 8

A microprocessor device for executing instructions, said device having System for generating memory
privilege levels 0-3 within which said instructions execute, and having a requests with alignment
system for generating memory requests with alignment checking of checking of said memory

said memory requests, said device comprising:

requests is a means-plus-
function term:

a flag register writable by an instruction executed at privilege level 3, Function:
said flag register including an alignment control bit for enabling

generation of an alignment fault;

(1) Generating memory
requests-generating a signal on a
bus connected to memory, which
signal contains a memory
address, control information (i.e.
whether it is a read or write
request and how many bits are
desired), and if it is a write

request, the data to be written;
(2) Alignment checking-
detecting misaligned data
references (i.e. the data address
is not a multiple of its length);
(3) Receiving an enable signal.
The enable signal is present
when the alignment control bit
and the masking bit are set, as
specified in the claim; and

(4) Generating an alignment
fault if a misaligned memory
request occurs and the enable
signal is present-generating a
signal indicating a fault if the
memory request is misaligned
and the enable signal is present.
Corresponding Structure:

Fig. 4 (segmentation unit 14,
control unit 19); Fig. 5 (gates 46,
47,48,49,63, 65 and 67-72).

a control register writable by an instruction executed at privilege level A control register writable by
0, but not writable by an instruction executed at privilege level 3, and an instruction executed at
control register including a masking bit; and logic circuitry coupled to privilege level 0, but not
receive the contents of both said flag register and said control register, writable by an instruction
wherein said logic circuitry generates an enable signal only if both said executed at privilege level 3:
alignment control bit and said masking bit are set, said enable signal being No construction necessary.
coupled to said system for generating memory requests such that said

system generates an alignment fault if a misaligned memory request

occurs and said enable signal is present.

CLAIM 9

The microprocessor device according to claim 8 wherein said alignment
control and masking bits are set when their value is 1.

UNITED STATES PATENT NO. 5,555,423

Actual Claim Language Court's Claim Construction
CLAIM 1
In a microprocessor having at least two modes of operation including an A control unit is circuitry that
initial mode and a second mode, said initial mode being the mode to receives and executes microcode

which the microprocessor is initialized upon start-up, an apparatus for instructions and receives an
transitioning from the second mode to the initial mode, said apparatus interrupt signal.
comprising: a microcode memory means for storing microcode; a control

unit

coupled to the microcode memory means for receiving and executing Coupled to means connected
microcode that is stored in said microcode memory means and that directly or indirectly via hardware.

controls the microprocessor, said control unit also for receiving interrupt
signals;

a plurality of registers, coupled to the control unit, for storing register
data;

A plurality of registers: No
construction necessary.

an internal write-back cache, coupled to the control unit, for storing
cache data; a transition microcode program for unconditionally
transitioning from the second mode to the initial mode while
maintaining the validity of the contents of the internal write-back
cache including means for re-initializing registers selected to place
the microprocessor in its initial mode of operation;

Transition microcode program
means a firmware and/or
microcode that causes the
transition of the processor from
the second mode of operation to
the initial mode of operation.
Means for re-initializing
registers selected to place the
microprocessor in its initial
mode of operation is a means-
plus-function term:

Function: Re-initializing registers
selected to place the
microprocessor in its initial mode
of operation.

Possible Structure: Figure 2.
"Program for concerting from
second mode to initial mode"; Col.
4,11. 35-44; Col. 6,11. 13-15 and
35-44.

an external electrical pin connected to the microprocessor and coupled to
the control unit but not to the internal write-back cache and the plurality
of registers, that, when asserted, asserts a high priority interrupt to the
control unit, and

the control unit includes means for halting the microprocessor and
unconditionally executing the transition microcode program when said
interrupt is recognized; and

Means for halting the
microprocessor is a means-plus-
function term:

Function: Halting the
MmiCroprocessor.

Possible Structure: Circuitry
within control unit 16.

areset pin coupled to the internal write-back cache and the
plurality of registers for resetting the microprocessor by directly
resetting the contents of said plurality of registers and invalidating
the contents of the internal write-back cache.

A reset pin is a pin that is
connected via hardware to a
plurality of registers and the
cache.

Directly resetting means using
hardware to reset the contents of
the plurality of registers and
invalidate the contents of the
cache.

Coupled to means connected
directly or indirectly via hardware.

CLAIM 2

The apparatus of claim 1, wherein the microprocessor further
comprises floating point registers, and the transition microcode
program further comprises means for maintaining the contents of
said floating point registers.

Means for maintaining the
contents of said floating point
registers is a means-plus-function
term:

Function: Maintaining the
contents of the floating point
registers.

Possible Structure: Figure 2,
"program for converting from
second mode to initial mode"; Col.
4,11. 35-44; Col. 6,11. 13-15 and
33-44.

CLAIM 3

[missing text]

Produced by Sans Paper, LLC.

[missing text]

